Enhanced reversible lithium storage in germanium nano-island coated 3D hexagonal bottle-like Si nanorod arrays.
نویسندگان
چکیده
The rapid development of numerous microscale electronic devices, such as smart dust, micro or nano bio-sensors, medical implants and so on, has induced an urgent demand for integratable micro or nano battery supplies with high energy and power densities. In this work, 3D hexagonal bottle-like Si/Ge composite nanorod (NR) array electrodes with good uniformity and mechanical stability potentially used in micro or nano rechargeable Li-ion batteries (LIBs) were fabricated on Si substrates by a cost-effective, wafer scale and Si-compatible process. The optimized Ge nano-islands coated Si NR composite arrays as anode materials exhibit superior areal capacities and cycling performances by virtue of their favourable structural and improved conductivity features. The unique Si-based composite electrode in nanostructures can be technically and fundamentally employed to configurate all-solid-state Li-ion micro-batteries as on-chip power systems integrated into micro-electronic devices such as M/NEMS devices or autonomous wireless microsystems.
منابع مشابه
Electrolytic Manganese Dioxide Coatings on High Aspect Ratio Micro-Pillar Arrays for 3D Thin Film Lithium Ion Batteries
In this work, we present the electrochemical deposition of manganese dioxide (MnO₂) thin films on carbon-coated TiN/Si micro-pillars. The carbon buffer layer, grown by plasma enhanced chemical vapor deposition (PECVD), is used as a protective coating for the underlying TiN current collector from oxidation, during the film deposition, while improving the electrical conductivity of the stack. A c...
متن کاملMicrometric Growth of V2O5Hexagonal Nano-plates as an Active Material for Lithium Ion Battery Cathode Electrode
This manuscript reports the synthesis of V2O5 nanostructures using reflux method, without using additives such as surface reactants. The influence of reaction parameters like temperature and concentration on the growth of nanostructures have been investigated. It has been observed that the nanostructures are formed with a hexagonal nano-plate morphology, grown from a common core. The diameter o...
متن کاملControllable low temperature vapor-solid growth and hexagonal disk enhanced field emission property of ZnO nanorod arrays and hexagonal nanodisk networks.
ZnO nanorod arrays and nanodisk networks were grown directly on Si substrate by thermal evaporation of ZnCl(2) powder and a mixture of ZnCl(2) and InCl(3)·4H(2)O at 450 °C in air, respectively. The ZnO nanorods with the diameters of 0.64 to 0.91 μm and length of about 5.1 μm are single crystalline with the hexagonal structure and grow along the [001] direction. The nanodisk has perfect hexagona...
متن کاملHierarchical 3D ZnIn2S4/graphene nano-heterostructures: their in situ fabrication with dual functionality in solar hydrogen production and as anodes for lithium ion batteries.
Hierarchical 3D ZnIn2S4/graphene (ZnIn2S4/Gr) nano-heterostructures were successfully synthesized using an in-situ hydrothermal method. The dual functionality of these nano-heterostructures i.e. for solar hydrogen production and lithium ion batteries has been demonstrated for the first time. The ZnIn2S4/Gr nano-heterostructures were optimized by varying the concentrations of graphene for utmost...
متن کاملSelf-Organization of Ripples and Islands with SiGe-MBE
We explored two methods to obtain laterally ordered Ge/Si quantum dot arrays. For the first we exploit the two independent growth instabilities of the SiGe/Si(001) hetero-system, namely kinetic step bunching and Stranski-Krastanov (SK) island growth, to implement a two-stage growth scheme for the fabrication of long-range ordered SiGe islands. The second approach is to deposit Ge/SiGe onto prep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 6 3 شماره
صفحات -
تاریخ انتشار 2014